
Directive Definition Object

egghead.io presents

+

Directive Definition Object

Object returned by directive declaration that
provides instructions to the compiler.

Attributes

priority

Specify the order in which directives are applied to
the DOM. Directives are compiled in priority order,
from highest to lowest. The default is 0.

terminal

If set to true then the current priority will be the last
set of directives which will execute (any directives at
the current priority will still execute as the order of
execution on same priority is undefined).

scope

When true: then a new scope will be created for this
directive. If multiple directives on the same element
request a new scope, only one new scope is created.
The new scope rule does not apply for the root of the
template since the root of the template always gets a
new scope.

When { } (object hash): a new isolated scope is
created. This isolated scope does not inherit from
a parent scope. Useful when creating reusable
components, which should not accidentally read or
modify data in the parent scope.

The isolate scope object defines the properties of
the local scope. Used to pass data to the directive.
The keys of the isolate scope object are the property
names. The values define the relationship. The
possible values are:

⊲⊲ @ - binds to a string value.

⊲⊲ = - Bidirection binding to an object

⊲⊲ & - Binding to an expression

Optionally these can all be followed by an attribute
name, for example @localAlias. If no attribute
name is given, the name is assumed to be the same
as the key.

controller

Controller function, or string name of the controller
for the directive. The can be shared with other
directives by using require attribute. The controller is
provided the following injectable items:

⊲⊲ $scope - Current scope associated with the
element

⊲⊲ $element - Current element

⊲⊲ $attrs - Current attributes object for the
element

⊲⊲ $transclude - A transclude linking function
pre-bound to the correct transclusion scope.
The scope can be overridden by an optional first
argument. function([scope], cloneLinkingFn).

Consider using a controller instead of large link
function. This provides separation and enhanced
testability.

+

// example myModule.
directive(‘directiveName’,
 function () {
 return {
 restrict: ‘E’,
 scope: { myValue: ‘=’},
 link: function(scope, el, attrs) {
 ...
 }
 };
 });

myModule.directive(‘directiveName’, function () {
 return {
 scope: { },
 controller: ‘SomeCtrl’
 };
});

+

‘controller as’ syntax. Directive must define an
isolated scope if this option is used. If using a string
for the controller attribute, ‘controller as’ can be
used.

restrict

Restricts the directive to a specific directive DOM
declaration style. If omitted, the default (attributes
only) is used.

⊲⊲ E - Element name: <my-directive></my-
directive>

⊲⊲ A - Attribute (default): <div my-
directive=”exp”></div>

⊲⊲ C - Class: <div class=”my-directive:
exp;”></div>

⊲⊲ M - Comment: <!-- directive: my-
directive exp -->

type

String representing the document type used by the
markup. This is useful for templates where the root
node is non-HTML content (such as SVG or MathML).
The default value is “html”.

⊲⊲ html - All root template nodes are HTML, and
don’t need to be wrapped. Root nodes may
also be top-level elements such as <svg> or
<math>.

⊲⊲ svg - The template contains only SVG content,
and must be wrapped in an <svg> node prior
to processing.

⊲⊲ math - The template contains only MathML

content, and must be wrapped in an <math>
node prior to processing.

If no type is specified, then the type is considered to
be html.

template

replace the current element with the contents of the
HTML string. Migrates classes/attributes from the
replaced element.

You can specify template as a string representing

the template or as a function which takes two
arguments tElement and tAttrs (described in
the compile function api below) and returns a string
value representing the template.

Consider using templateUrl instead of HTML
strings in your javascript.

templateUrl

Same as template but the template is loaded from
the specified URL. Because the template loading is

require

Require another directive and inject its controller as
the fourth argument to the linking function. Takes a
string name (or array of strings) of the directive(s) to
pass in. If an array is used, the injected argument will
be an array in corresponding order.

The name can be prefixed with:

⊲⊲ (no prefix) - Locate the required controller on the
current element. Throw an error if not found.

⊲⊲ ? - Attempt to locate the required controller
or pass null to the link fn if not found. Makes it
optional

⊲⊲ ^ - Locate the required controller by searching
the element’s parents. Throw an error if not
found.

⊲⊲ ?^ - Attempt to locate the required controller by
searching the element’s parents or pass null to
the link fn if not found.

controllerAs

If using a controller function, you can use the

myModule.directive(‘directiveName’,
 function () {
 return {
 require: ‘otherDirectiveWithCtrl’,
 link: function(scope, el, attrs, ctrl) {
 ...
 }};
 });

myModule.directive(‘directiveName’,
 function () {
 return {
 template: ‘<div>DOM in code!</div>’
 };
 });

+

link

This property is used only if the compile property is
not defined.

The link function is responsible for registering DOM
listeners as well as updating the DOM. It is executed
after the template has been cloned.

function link(scope, iElement, iAttrs,
controller, transcludeFn) { ... }

⊲⊲ scope - Scope - The scope to be used by the
directive for registering watches.

⊲⊲ iElement - instance element - The element
where the directive is to be used. It is safe to
manipulate the children of the element only
in postLink function since the children have
already been linked.

⊲⊲ iAttrs - instance attributes - Normalized list
of attributes declared on this element shared
between all directive linking functions.

⊲⊲ controller - a controller instance - A
controller instance if at least one directive on
the element defines a controller. The controller
is shared among all the directives, which
allows the directives to use the controllers as a
communication channel.

⊲⊲ transcludeFn - A transclude linking
function pre-bound to the correct transclusion
scope. The scope can be overridden by an
optional first argument. This is the same as
the $transclude parameter of directive
controllers. function([scope],
cloneLinkingFn).

asynchronous the compilation/linking is suspended

until the template is loaded.

transclude

compile the content of the element and make
it available to the directive. Typically used with
ngTransclude. The advantage of transclusion
is that the linking function receives a transclusion
function which is pre-bound to the correct scope. In
a typical setup the widget creates an isolate scope,
but the transclusion is not a child, but a sibling of the
isolate scope.

The value can be:

true - transclude the content of the directive.
‘element’ - transclude the whole element including
any directives defined at lower priority.

compile

The compile function deals with transforming the
template DOM. Since most directives do not do
template transformation, it is not used often.

myModule.directive(‘directiveName’,

 function () {

 return {

 transclude: true,

 template: ‘<div ng-transclude>[...]

Notes

